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What this talk is about
❖ Introducing a new, “upstream-able” data sharing scheme for 

CLANG/LLVM trunk (not to be confused with the current 
implementation).

❖ In the current talk we cover only the first level of sharing: 
from one thread in an OpenMP team to the rest of the 
threads in the team.

❖ Overcoming the problem that:

“In certain use cases, OpenMP’s default sharing of local 
variables is incompatible with the default allocation into 

local memory of local variables on NVIDIA GPUs.”
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Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

OpenMP allows nesting of regions with different numbers of threads.
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Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

1 thread

all threads

OpenMP
semantics
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Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

1 thread

all threads

We need to
share “c”
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Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

1 thread

all threads

Default NVPTX 
backend policy:
“c” is allocated 
onto the thread 

local stack
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Mapping OpenMP to GPUs
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void test(){

  int c = 5000;

  #pragma omp target

  {

    c += 1;

    #pragma omp parallel for

    for (i) {

      A[i] = c * i;

    }

  }

}

1 thread

all threads

On GPUs threads cannot share a variable allocated on the local stack.

Default NVPTX 
backend policy:
“c” is allocated 
onto the thread 

local stack
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Function outlining
❖ In general: OpenMP regions delimited by different 

constructs will be outlined. 
❖ The master thread assigns those regions to workers 

dynamically: we therefore avoid dynamic thread launch 
in favour of dynamic work allocation to existing threads.

❖ Outlining ensures that all parallel OpenMP regions have 
access to all the worker threads including OpenMP regions 
that are defined in other compilation units.

❖ Data must be shared across multiple functions.
8
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OpenMP outlined regions example
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void test(){

  int c = 5000;
  #pragma omp target
  {
    c += 1;

    #pragma omp parallel for
    for (i) {
      A[i] = c * i;
    }

    c += 2;
  }
}

MASTER

WORKERS

MASTER
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Changes to CLANG and the runtime

❖ The runtime maintains a list of references to the shared 
variables.

❖ The MASTER region needs to initialize this list.
❖ The WORKER region retrieves the list from the runtime and 

passes the arguments to the outlined parallel region (in the 
expected order).

10
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Mapping OpenMP to GPUs
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void test(){

  int c = 5000;
  #pragma omp target
  {
    c += 1; // LLVM-IR: %c = alloca i32

    #pragma omp parallel for
    for (i) {
      A[i] = c * i;
    }

    c += 2;
  }
}

allocated in the
MASTER thread’s

local memory by default,
BUT

must now be
“shareable”

with the WORKERS!

1. In the CUDA model shared variables must be  explicitly declared as __shared__.
2. On a GPU, variables allocated in local memory cannot be shared.
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Changes to LLVM’s NVPTX Backend
• There are 4 alternative ways for lowering a shared variable: 

- lower alloca to local memory - no sharing needed; 

- lower alloca to shared memory - one instance of the shared 
variable per team, store variable in shared memory stack, 
limited by shared memory size; 

- lower alloca to global memory - one instance per team but in 
global memory, no more team-level management of the 
variable, vulnerable to recursive functions; 

- lower alloca to runtime-managed memory - use a global 
memory stack managed by the runtime, supports all cases, 
interactions with runtime are expensive.
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Shared Memory Shared Memory Shared Memory

%c

%c

%c …

MasterWorkers

%c

%c

%c …

MasterWorkers

%c

%c

%c …

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

No Sharing
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Shared Memory Shared Memory Shared Memory

shared_args

shared_args

shared_args …

%c

MasterWorkers

shared_args

shared_args

shared_args …

%c

MasterWorkers

shared_args

shared_args

shared_args …

%c

MasterWorkers

Team Team Team

Global memory Shared memory Local memory

Shared Memory Scheme

Runtime managed
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Change address space
• Introduce a new LLVM-IR pass which will recognize the cases where an 

alloca should use shared memory instead of local. Detection condition: 
- if an alloca has its address taken i.e. the alloca address is stored 

• Insert two address space cast instructions from generic to shared and 
from shared to generic.

15

%a = alloca i32

…

store i32* %a, i32** %2

%a = alloca i32
%1 = addrspacecast 0 to 3
%2 = addrspacecast 3 to 0

…

store i32* %a, i32** %2
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Use a shared stack

❖ We need to change some of NVPTX’s passes over the 
LLVM, Machine Instruction and PTX intermediate 
representations:
• Introduce a new depot in the prologue of the kernel 

function for the allocation of shared variables.
• Introduce a shared stack pointer which mimics the way 

the local stack pointer is set up in the entry block.

16
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Use a shared stack
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❖ Extend lowering of alloca’s to shared memory:
• SP for generic address space operations.
• SPL for local address space operations.
• SPSH for shared address space operations.

kernel() {
.local  .align 8 .b8 __local_depot[10]
.shared .align 8 .b8 __shared_depot[10]

mov.u64         %SPL, __local_depot
mov.u64         %SPSH, __shared_depot
cvta.local.u64  %SP, %SPL
cvta.shared.u64 %SP, %SPSH

add.u64         %rd1, %SPSH, 8
ld.shared.u64   %rd2, [%rd1]
…

}         PTX
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Propagate use of shared stack pointer

18

%vreg25<def> = LEA_ADDRi64 <fi#3>, 0;
%vreg6<def> = cvta_to_shared_yes_64 %vreg25<kill>;

%vreg25<def> = LEA_ADDRi64 %VRShared, 32;
MI - IR

MI - IR

❖ Add a new pass to the NVPTX that will lower the frame 
index of shared values to the shared stack pointer (SHSP).

❖ This pass operates on the internal representation of NVPTX 
(MI - Machine Instruction).
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Putting it all together
❖ Addition of a shared memory scheme compatible with the 

current code generation scheme:
• we modified the runtime to share values from MASTER to 

WORKER threads.
• we modified CLANG’s code generation to support our 

data sharing convention.
❖ Sharing relies on variables being stored in a “shareable” 

memory address space on the device:
• we modified LLVM’s NVPTX Backend to support the 

lowering of shared variables to the GPU’s shared 
memory.

19
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Limitations & future work
❖ Limitations of the new data sharing scheme:

• No communication from CLANG to LLVM about OpenMP: 
CUDA and OpenMP offloading share the same toolchain, 
distinguish between the two.

• Shared memory is limited: adopt one of the more generic 
sharing alternatives for cases in which shared memory is 
insufficient or inefficient due to occupancy.

• Support for recursive functions
• Support second level of sharing among WORKERS: 

currently the new data sharing infrastructure only supports 
sharing from MASTER to WORKERS.

❖ These limitations do not apply to the current data sharing scheme.
20



Thank you for listening! 
Questions?
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Shared Memory Shared Memory Shared Memory

shared_args

shared_args

shared_args …

%a

MasterWorkers

shared_args

shared_args

shared_args …

MasterWorkers

shared_args

shared_args
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MasterWorkers

Team Team Team
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Future Work: Global Memory Scheme

Runtime managed

%b %c %a %b %c %a %b %c
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Future work: sharing among workers
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void test(){
  int c = 5000;
  #pragma omp target
  {
    c += 1;
    #pragma omp parallel for
    for (i) {
      int d;
      d = c * i;
      #pragma omp simd
      for (j) {
         B[j] = d * j;
      }
    }
    c += 2;
  }
}


